
Monte Carlo simulation of a model of water

A. C. Maggs
Laboratoire de Physico-Chime Théorique, UMR CNRS-ESPCI 7083, 10 rue Vauquelin, 75231 Paris Cedex 05, France

�Received 13 June 2005; published 14 October 2005�

We simulate TIP3P water using a constrained Monte Carlo algorithm to generate electrostatic interactions
eliminating the need to sum over long-ranged Coulomb interactions. We study discretization errors when
interpolating charges using splines and Gaussians. We compare our implementation to molecular dynamics and
Brownian dynamics codes.
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The TIP3P model of water �1� is often used to study the
accuracy of algorithms for atomistic simulation. The model
has a single Lennard-Jones center representing an oxygen
atom together with three charges �−0.834, +0.417, +0.417�
arranged in a triangle. The oxygen-hydrogen bond length is
0.9572 Å the angle between bonds is 104.52°. Accurate
simulation of this model is surprisingly challenging: The
bare electrostatic interaction between oxygen atoms at a
separation of 2.75 Å, is over 100 kBT. Small errors in the
representation of the electrostatic potential lead to significant
errors in the total energy due to large cancellations; the bind-
ing energy per hydrogen bond is only 7 kBT.

Many molecular dynamics codes for the simulation of
large numbers of charges are based on Poisson solvers. The
codes interpolate charges to a cubic grid and then calculate
the electrostatic energy via fast Fourier transform �2� or mul-
tigrid �3,4�. The principle difficulty is controlling errors in
the Coulomb interaction using high-order interpolation. One
requires a relative error of at most �10−4. In this article, we
present a Monte Carlo algorithm for simulation at this level
of accuracy. We avoid solving the Poisson equation by gen-
eralizing an algorithm which generates the Coulomb interac-
tion between particles using Monte Carlo evolution of the
electric field. Previous codes using this local algorithm have
been of low accuracy, sufficient for the study of lattice gasses
�5,6� or charges interacting through an implicit solvent �7,8�.
They were still far from the accuracy needed for the simula-
tion of TIP3P. This articles considers the modifications nec-
essary to the algorithm in order to reliably simulate standard
atomistic models.

There were three important sources of error in the energy
functions used in previous work with local electrostatics al-
gorithms: �8�

�i� Use of low-order interpolation leading to distorted
charge distributions.

�ii� Aliasing errors in the lattice Green functions leading
to a self-energy with the periodicity of the lattice.

�iii� Low-order discretization of the lattice Green func-
tion leading to anisotropy in the effective interactions.

In many codes, interpolation of charges from the con-
tinuum to the cubic grid is performed with splines. A
one-dimension n-spine is a set of n polynomials of order
n−1. These polynomials give the quantity of charge which
is deposited on n consecutive sites of the lattice as a function
of the position of the particle, f i�x�, 1� i�n. Linear

interpolation corresponds to a two-spline. In three dimen-
sions, one takes the product of splines in the x, y, and z
directions, interpolating a charge to n3 lattice site, thus
f l�r�= f i�x�f j�y�fk�z� for r= �x ,y ,z� and l= �i , j ,k�. Splines
have several useful properties for interpolation: They con-
serve total charge exactly; they are smooth with n−2 con-
tinuous derivatives. With Fourier solvers splines work well if
one takes n�4 �2�.

An alternative to splines is interpolation with truncated
Gaussians �2,3�. Consider interpolating a unit charge
to a one-dimensional grid with Gaussian interpolation:
f i�x�=exp�−�x− i�2 /2�2� /�2��. The total interpolated
charge can be evaluated for � large with the Poisson

re-summation formula: qint=�i f i�x�=�p f̃�2�p� where f̃
is the �continuous� Fourier transform of f i�x�. We find

qint�1+2 cos�2�x�e−2�2�2
. Already for �=1, errors in

charge conservation are O�10−8�. In practice, one truncates
beyond ��, where ��4–5, leading to an additional error
which varies as e−�2/2.

In order to study the various errors generated with lattice
Monte Carlo algorithms for the electrostatic energy, consider
the interaction between two particles placed at r and r�.

U�r,r�� = �
l,m

f l�r�G�l − m�fm�r�� , �1�

=�
p
� d3q

�2��3 f̃�q − 2�p� f̃�q�G�q�

�eiq·�r−r��+2�ip·r, �2�

where G�l� is the lattice Green function of the interaction
between two sites and G�q�, its Fourier transform, has the
periodicity of the Brillouin zone. 2�p is a vector of the re-
ciprocal lattice. The integral is over all Fourier space. The
particles also have a self-energy U�r ,r� /2.

Consider the contribution p=0 in Eq. �2�

U0�r,0� =� G�q� f̃2�q�eiq·r d3r

�2��3 . �3�

If f̃ is Gaussian and G�r�=1/4�r, G�q�=1/q2 so that
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U0�r,0� +
erfc�r/2��

4�r
=

1

4�r
. �4�

This is the central formula for so called “particle mesh
Ewald” methods �2,3�. One neglects contributions with p
�0 and calculates the Coulomb energy as a lattice energy,
Eq. �1�, plus a short-range correction. Deviations from Eq.
�4� occur if the structure factors are not Gaussian: For splines

f̃ =	�sincn�q� /2� with �= �x ,y ,z� which has the cumulant

expansion f̃ �	 exp�−nq�
2 /24−nq�

4 /2880�. Splines converge
for large n to Gaussians of width �2=n /12. However inter-
polation with splines generates an extra contribution at
q=0 in Eq. �3� due to the term in q�

4 in the cumulant. This
leads in real space to an error which decays as 1/r5. The
amplitude of this error decays rather slowly with n.

The aliasing error comes from the contributions p�0.
Consider, for instance the self-energy U�r ,r� /2 and the

contribution to Eq. �2� from p1= �1,0 ,0�. Since f̃�q� decays

rapidly in Fourier space, the product f̃�q−2�p1� f̃�q� is
maximum on the boundary of the first Brillouin zone near
q=��1,0 ,0�. If we sum over all symmetry-related lattice
reciprocal vectors, we find a periodic one-body potential

V1 � f̃2��p1�G��p1��
�

cos 2�r�. �5�

Higher-order corrections to V1 come from larger p. We com-
pare spline and Gaussian interpolation: For a Gaussian

f̃2��p1�=e−�2�2
, whereas for a n-spline we find f̃2= �2/��2n

�e−0.9n. Requiring f̃2�10−4 implies that ��1 or n�10. An
implementation using low-order splines with only n=3
showed strong aliasing artefacts �8�. The sinusoidal form of
Eq. �5� permits simple analytic subtraction, but we will not
pursue this point here.

We now turn to errors in the lattice Green function, G�r�.
Coulomb’s law in electromagnetism results from the imposi-
tion of a linear constraint, Gauss’ law: � ·E=�, on a qua-
dratic energy functional: U=1/2
E2d3r. Previous codes that
discretized these equations led to the standard seven-point
discretization of the Laplacian operator:

G−1�q� = 2�
�=1

3

�1 − cos q�� �6�

Expanding, we find

G�q� =
1

q2 +
1

q4 �
�=1

3
q�

4

12
+ . . . �7�

The presence of terms which involve q�
4 /q4 imply a correc-

tion to G�r� which decays as only 1/r3. We now construct a
discretization which converges faster. Consider an energy
which is a quadratic function of P electric field variables Ei,
where the subscript includes both positional and directional
information.

UE =
1

2�
i,j

P

EiKijEj � EKE/2 �8�

We continue with an operator notation for compactness. We
submit this energy to L	 P linear constraints, cl

cl � �
p=1

P

DlpEp − el = 0, ∀ l , �9�

where Dlp is a discretization of the divergence operator at l
and el is the charge. Stationary points are found by consid-
ering the functional A=UE−�l
lcl. D is a linear operator, we
define the adjoint D*. The variational equations of E are

KE − D*
 = 0. �10�

Solving for E in Eq. �10� and substituting in the constraint
equation Eq. �9�, we find a generalized Poisson equation for
the Lagrange multipliers 


DK−1D*
 − e = 0 �11�

From this Poisson equation, we find that the minimum of the
constrained energy is

Uc = e
/2 = eGKe/2, �12�

with the Green function GK
−1=DK−1D*. We make

contact with electrostatics if we recognize that D=div im-
plies D*=−grad, and G−1=−�2.

We will now generalize these results to nonzero tempera-
tures and show that the effective interaction between par-
ticles is still described by the Green function GK. The con-
straints are now imposed by delta-functions in a partition
function

Z =� 	
p=1

P

dEpe−�UE	
l=1

L

��cl� , �13�

We decompose the field E into generalized “longitudinal”
and “transverse” components by writing E=K−1D*
+Et and
change integration variables from E to Et. The partition func-
tion then factorizes

Z = e−�Uc� 	
p=1

P

dEt,pe−�EtKEt/2	
l=1

L

��DEt� ,

=ZK � constant, �14�

where ZK is a partition function for particles interacting with
the Green function GK.

Previous implementations �6� took the following forms
for the operators D and K: DE was the flux out of the site l
to the six nearest-neighbor sites. K was diagonal, K=�ij,
leading to Eq. �6�. Here, we keep the same form for the
operator D, but for K we include interactions between neigh-
boring links on the lattice; for x-oriented bonds of the lattice
the energy function is
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UE =
1

2 ��5

6
Ei,j,kx

2 +
1

12
Ei,j,kx�Ei+1,j,kx + Ei−1,j,kx�� ,

�15�

with similar expression for the links in the y and z directions.
In Fourier space, we find that

K�q� =
1

6
diag�5 + cos qx,5 + cos qy,5 + cos qz� ,

D�q� = �1 − eiqx,1 − eiqy,1 − eiqz� ,

D*�q� = �1 − e−iqx,1 − e−iqy,1 − e−iqz�T,

where “diag” denotes a matrix with the indicated diagonal
elements, so that

G−1 = D�q�K−1�q�D*�q� = 12�
�

1 − cos q�

5 + cos q�

G�q� =
1

q2 +
1

q4�
�

q�
6

240
+ . . . �16�

This form of G leads to reduced artefacts in the lattice Green
function; errors now decay as 1/r5.

To calibrate the effective interaction generated by our
constrained algorithm, we numerically inverted the Green
function Eq. �16�. We take two interpolated unit charges and
measured the potential between them, Fig. 1, as a function of
� and compared with the �exact� Ewald energy, Uw. We find
collapse of the error when we plot 4��U−Uw��5 as a func-
tion of r /� for �1. We conclude that the error in the pair
potential can be written in the scaling form

�UG�r,r�,�� =
1

�5V5„�r − r��/�… , �17�

for �1. V5 does depend on the direction of the relative
displacement with respect to the lattice. The error increases
strongly for r /�	2, however, smaller distances in our simu-

lations will be within the core of the Lennard-Jones potential
and will not be sampled. Due to the regularity of V5, one
could also improve accuracy of the simulation by subtracting
the error off of the real space potential after parameterizing it
with splines. For �	1, aliasing errors are increasingly im-
portant, adding an sinusoidal contribution to the error as ex-
pected from Eq. �5�. �=1 generates errors in the potential
which are O�10−4�.

One simulates a system described by the energy Eq. �8�
with the constraint Eq. �9� with the Metropolis method by
introducing two independent Monte Carlo updates: Plaquette
updates, which satisfy D�E=0, consist of the coupled update
of the four links forming a plaquette �6� of the cubic lattice.
On each of these links, the field is modified by the same
amount �, so that the flux of E at each node remains con-
stant. With the addition of nearest-neighbor interactions, Eq.
�15�, calculation of the energy change requires the values of
the field from 12 links. Motion of a particle is possible if a
local update of the field is performed simultaneously such
that D�E=�� where �� is the localized charge fluctuation.

We implemented a simulation of TIP3P water using
Gaussian interpolation due to the superior convergence prop-
erties at higher accuracies. We work in units of the mesh
size. Three-dimensional Gaussians, with �=1, are calculated
as direct products of one-dimensional Gaussians each trun-
cated at �=4.3. The three atoms of each molecule are inter-
polated together. The small error, O�10−8�, in charge conser-
vation is corrected on the grid point nearest the oxygen atom.
In this way, we insure that charge is conserved in the algo-
rithm to machine precision. We perform a trial move and
re-perform both interpolation and charge correction steps.
This gives us a localized charge fluctuation ��. We generate
a local field modification in a box enclosing the original and
final sites: We use a �E such that �i�Ei

2 /2 is minimum while
respecting D�E=��. Outside of the region where ��=0, we
impose that �E=0. This leads to a small Poisson problem
�with zero flux boundary conditions� within the interpolation
volume which can be solved using the FFTW library �9�.
Lennard-Jones and erfc interactions were truncated at a dis-
tance of 9 Å. We use Monte Carlo updates in both the posi-
tion and orientation of the molecules, tuned to give an ac-
ceptance rate of about 40%. For each update of a molecule,
we perform 100 plaquette updates. Simulations were per-
formed at 300 K at constant volume. Due to the simplicity of
the plaquette updates compared with the the calculation of
the erfc interaction, they take a small part of the simulation
time.

We compared our Monte Carlo simulation of TIP3P with
a molecular dynamics simulation �10� using using a Lange-
vin thermostat, friction 1 ps−1, integration time step 1 fs. We
used a cubic box of side 18.62 Å and a grid of 203 sites for
the Monte Carlo. We measured the autocorrelation time of
the potential energy, V using blocking �11�, after removing
the energy in the transverse electric field in the Monte Carlo
runs. A set of recordings corresponding to T sweeps or time
steps is averaged in blocks of b=2m recordings, to estimate
the mean potential energy, �V�, and a running estimate in the
error in �V�, �̃�b�. For large blocking factors, �̃�b� saturates
to a constant �̃v; the integrated autocorrelation time is given

FIG. 1. �Color online� Scaled error in the pair potential using the
energy Eq. �16� for �=0.90, 1.0, 1.2, 1.4, and 1.6. One particle
placed at �0, 0, 0� the second displaced in the direction �1, 1, 1�.
Solid lines: Curves for �=1.2, 1.4, and 1.6 superpose: Errors in G
dominate. Dashed lines: �=0.90 and 1.0. Oscillations, Eq. �5�, from
aliasing are also important and violate the scaling in �5.
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by �= �̃v
2T /2�V2− �V�2�. In order to obtain good statistics for

the dynamics, we simulated a small system of 216 particles
for several thousand �; use of large systems would require
simulations which are too slow to give useful statistical re-
sults on dynamical quantities. The running estimate of ��b� is
plotted in Fig. 2. We estimate that �=1100 for molecular
dynamics and �=800 for Monte Carlo. We also performed
Brownian dynamics simulations with the time step equal to
1/10 of the stability limit using an Euler integrator finding
�=3200.

To conclude, we have implemented a Monte Carlo algo-
rithm for the simulation of TIP3P. Each Monte Carlo time
step implies two interpolations per charge plus calculation of
a localized current. Each molecular dynamics step requires
one charge interpolation and then three extrapolations for the
force plus solution of the Poisson equation. The total com-
plexity of the interpolation steps is very similar in molecular
dynamics �particularly multigrid� codes and in our Monte
Carlo formulation. The integrated autocorrelation time with
our algorithm is comparable to simulations performed using
molecular dynamics when measured in sweeps. CPU time
comparisons were less favorable to our code in part since the

�Fourier-based� Gromacs package contains contains exten-
sively optimized routines for interpolation which we did not
implement. Multigrid and the present Monte Carlo algorithm
are also obliged to use a larger interpolation footprint than
pure Fourier-based algorithms. Improved algorithms for
Gaussian interpolation will reduce the speed difference.

In this article, we introduced estimates of the error in the
real-space potential generated by our algorithm. These esti-
mates differ from those widely used in the analysis of mo-
lecular dynamics codes, which concentrate on force errors.
Force estimates are, however, not natural for the analysis of
Monte Carlo algorithms. If we were to implement the above
discretizations in a molecular dynamics code using the ideas
in Ref. �12� force errors would then be very similar to those
presented in the analysis of multigrid algorithms in Ref. �3�.
This paper also gives a detailed comparison of the relative
errors in real space solvers such as multigrid and more con-
ventional Fourier-based solvers.

The authors in Ref. �3� also reduced the range of the
interpolation step by introducing a second on-lattice convo-
lution after interpolating charges to the grid. Similar tech-
niques are possible here if we modify the kernel K so as to
include a extra spreading step; charge interpolation then be-
comes cheaper. In our algorithm, this simplification in charge
motion is balanced by an increase in the complexity of
plaquette updates.

Our algorithm has the important advantage over other
codes of being purely local, and thus easily implemented on
parallel computers with limited interprocessor communica-
tion, such as is the case on low cost clusters. With a Monte
Carlo algorithm, there is also an enormous gain in flexibility
in heterogenous environments: In simulations of a biomol-
ecule or an interface most of the water molecules play the
role of distant spectator, even if they provide the majority of
charge centers. In Monte Carlo, it is trivial to bias moves
toward interesting degrees of freedom, or even introduce
cluster �13� or multistep �14� updates; with molecular dy-
namics multiscale and multistep algorithms are difficult to
implement and prone to instability.
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FIG. 2. �Color online� Blocking analysis of the energy with
Monte Carlo �MC�, molecular dynamics �MD�, and Brownian dy-
namics �BD� to estimate the energy autocorrelation time. The esti-
mated � for each method is indicated with a dot-dashed line.
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